

On Various Approaches to Dynamic
Adaptation of Distributed Component

Compositions

Vladimir Tosic, Bernard Pagurek,

Babak Esfandiari, Kruti Patel

OCIECE-02-02

June 2002

 1

On Various Approaches to Dynamic Adaptation of Distributed
Component Compositions

Vladimir Tosic, Bernard Pagurek, Babak Esfandiari, Kruti Patel
Network Management and Artificial Intelligence Lab

Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
{vladimir, bernie, babak, kpatel}@sce.carleton.ca

ABSTRACT
We research dynamic reconfiguration of component sys-
tems in the context of dynamic adaptation. We classify
various approaches to dynamic adaptation of component
composition and conclude that they differ in power and
complexity, yet still have significantly compatible strengths
and weaknesses. Therefore, we argue for an integrated ap-
proach that implements several different approaches and
leverages their compatible benefits by applying the appro-
priate one in a given situation. In the remainder of the paper
we show how our recent research fits into this framework.
This research is concentrated on Web Services as a specific
type of distributed components. We explore Web Services
with multiple classes of service and dynamic adaptation of
Web Service compositions using manipulation of classes of
service. Such an approach to dynamic adaptation is com-
plementary to the reconfiguration of compositions of Web
Services done by finding alternative Web Services and re-
binding. Its benefits include adaptation speed, enhanced
robustness of the relationships between components, sim-
plicity, and low overhead. Also, providing multiple classes
of service at the Web Service level has other benefits such
as increased flexibility and choice for both Web Service
vendors and consumers, while maintaining relatively low
overhead and limited complexity of required management.

Keywords
Dynamic adaptation, Web Services, compositions of Web
Services, component compositions, classes of service, serv-
ice offerings, formal specification of constraints.

1 INTRODUCTION
Our research group has extensive experience in applying
advanced technologies for managing computer and com-
munication networks, distributed systems, and services.
Several of our recent projects are related to the manage-
ment of component-based software systems. At WCOP
(Workshop on Component-Oriented Programming) 2000,
we have presented our work on dynamic (i.e., run-time)
service composition from components [11, 12]. At WCOP
2001, we have presented our work on software hot-
swapping, i.e., dynamic software evolution with minimal
system interruption [17, 4].

The theme of this workshop, WCOP 2002, is dynamic re-
configuration of component systems. In this paper, we pre-
sent our resent research on dynamic adaptation of compo-
nent compositions, particularly compositions of Web Serv-

ices. In our work, reconfiguration is performed to adapt the
component system to new circumstances and/or require-
ments. By ‘reconfiguration of a component composition’
we mean not only establishing new relationships between
the composed components, but also modification of exist-
ing relationships.

After this introduction, we define a Web Service and dis-
cuss some of its distinguishing characteristics as a distrib-
uted component. Then, we argue for Web Services with
multiple classes of service and present our language for
formal specification of classes of service for Web Services.
Next, we discuss in detail our work on dynamic adaptation
capabilities using manipulation of classes of service. These
capabilities are used for dynamic reconfiguration of com-
ponent compositions, without breaking existing relation-
ships between the composed Web Services. We also briefly
present our ongoing work on an infrastructure supporting
the concept of classes of service for Web Services and our
dynamic adaptation management capabilities. After this
presentation of our recent research, we classify approaches
to dynamic adaptation of component compositions and ad-
vocate an integrated approach. We argue that our dynamic
adaptation capabilities are a useful complement and addi-
tion to reconfiguration of component systems based on
finding alternative components and rebinding. At the end,
we summarize conclusions and challenges for future work.

2 WEB SERVICES AS COMPONENTS
Many leading computing companies— including Microsoft,
IBM, Sun, Hewlett-Packard, Oracle, BEA, etc.— have re-
cently announced their Web Service initiatives. These in-
dustrial initiatives are accompanied by the corresponding
work of industrial standardization bodies, most notably the
W3C (World Wide Web Consortium) [8, 3]. While defini-
tions of a Web Service in different industrial initiatives
vary somewhat, the common idea is that a Web Service is a
unit of business, application, or system functionality that
can be accessed over the Internet by using XML (Extensi-
ble Markup Language) messaging. Note that the goal of the
work on Web Services is distributed application-to-
application (A2A) and business-to-business (B2B) integra-
tion— particularly ad hoc, impromptu, and temporary in
nature— over the Internet. Consequently, the true power of
this technology is not in providing stand-alone Web Serv-
ices for human users, but in composing Web Services pro-
vided by independent business entities, potentially imple-

 2

mented in different programming languages, and poten-
tially running on different platforms.

Web Services are components, as defined in the call for
papers for this workshop [2]. That is, Web Services are
independently-deployed units of third-party composition
with explicitly specified contractual interfaces. Often, this
composition is performed dynamically, i.e., during run-
time. However, Web Services are not software components,
as defined by [16] and [6]. One of the differences is that
Web Services— contrary to software components— are not
units of independent deployment by the composing parties.
Web Services are already deployed over the Internet and
the composing parties only use them. Further, Web Serv-
ices are not binary units of independent production because
their implementation is hidden. One binary unit of program
code (e.g., a software component) can implement several
Web Services. In addition, a Web Service can, in principle,
provide not only software functionality and data, but also
access to some hardware resources such as memory, print-
ing, network bandwidth, etc. In spite of these and other
differences, the similarities between the two concepts make
a significant part of the work on software components rele-
vant for Web Services, and vice versa. While our work is
oriented towards Web Services, we find it very relevant for
the theme of this workshop.

3 WEB SERVICES WITH MULTIPLE CLASSES
OF SERVICE AND THEIR SPECIFICATION

As the number of Web Services that offer similar function-
ality increases in the market, the offered QoS and
price/performance ratio, as well as adaptability, will be-
come the main competitive advantages. In certain circum-
stances, it can be useful to enable a Web Service to offer
several different classes of service to consumers. Hereafter,
by a consumer of a Web Service A we assume another Web
Service that is composed with A and collaborates with it,
not an end user (human) using A. One Web Service can
serve many different consumers, possibly at the same time.

A class of service is a discrete variation of service and QoS
(Quality of Service). Classes of service can differ in usage
privileges, service priorities, response times guaranteed to
consumers, verbosity of response information, etc. The
concept of classes of service also supports different capa-
bilities, rights, and needs of potential consumers of the
Web Service, including power and type of devices they
execute on. Further, different classes of service may imply
different utilization of the underlying hardware and soft-
ware resources and, consequently, have different prices.
Due to the flexibility to accommodate several classes of
consumer, providing different classes of service and their
balancing helps vendors of Web Services to achieve maxi-
mal monetary gain with more optimal utilization of re-
sources. On the other hand, consumers of such Web Serv-
ices get additional flexibility to better select service and
QoS that they will receive and pay for and minimize the
price/performance ratio and/or the total cost of received
services. Additionally, different classes of service can be

used for different payment models, such as pay-per-use or
subscription-based. While providing differentiated services
and multiple classes of service are well-known concepts in
telecommunications [9, 1], we are trying to address issues
relevant for Web Services and their compositions, includ-
ing dynamic adaptation of compositions of Web Services
using manipulation of classes of service. Studying issues
related to classes of service at the Web Service level has
practical relevance for Web Service compositions, but it
has not been addressed by prior works.

We have conducted a thorough analysis to compare service
differentiation using classes of service with relevant alter-
natives, including parameterization, multiple ports, multiple
Web Services, personalization techniques such as user pro-
filing, etc. The main advantages of having a relatively lim-
ited number of classes of service over other types of service
differentiation are limited complexity of required manage-
ment and relatively low overhead incurred. For example,
we find that personalization techniques aimed at human
users can be too complex for simpler Web Services com-
posed with other Web Services. We want to limit the com-
plexity and overhead in order to assure solutions are scal-
able to large compositions of Web Services. In addition,
classes of service are supported by many underlying tele-
communications technologies. Our approach is an addi-
tional and complementary mechanism for discrete differen-
tiation of service and QoS, and not a complete replacement
for alternatives. It might not be appropriate for all circum-
stances, e.g., due to its own overhead. Later in this paper,
we argue for an integrated approach to dynamic adaptation
of compositions of Web Services, where one of the tech-
niques is based on the manipulation of classes of service.

One of the conclusions of our past project on dynamic serv-
ice composition [11, 12] was that comprehensive formal
specification of components supports selecting appropriate
components in the process of dynamic service composition
and that it can help reduce unexpected interactions between
the composed components. Consequently, we need a com-
prehensive formal specification of Web Services with mul-
tiple classes of service.

We define a service offering as a formal and unambiguous
representation of one class of service of one Web Service
or one port of a Web Service. Service offerings of one Web
Service relate to the same characteristics described in the
corresponding WSDL (Web Services Description Lan-
guage) file, but differ in constraints that define classes of
service. These service offerings are specified separately
from the WSDL description of the Web Service. They form
electronic contracts between the composed Web Services
and are a basis for monitoring and management activities.
Hereafter, we will occasionally use the shorter term ‘offer-
ing’ with the meaning ‘service offering’.

A port-level service offering specifies only constraints
upon the constructs in the referred port. A component-level
service offering of a Web Service with multiple ports de-

 3

scribes an allowed combination of port-level offerings. If a
Web Service has only one port, the component-level offer-
ing is identical to the corresponding port-level offering.

We specify service offerings for Web Services in a compre-
hensive XML-based notation called WSOL (Web Service
Offerings Language). More information about WSOL and
the status of its development can be found in [19], while
here we will give only a very brief summary. The syntax of
WSOL is defined using XML Schema. WSOL is a fully
compatible extension of WSDL (Web Services Description
Language). WSDL is a W3C standard for describing Web
Services in an XML notation. However, WSDL does not
enable specification of various constraints on operations
and ports in a Web Service. While WSDL can (and has to)
be extended in several different areas, WSOL extends
WSDL only with capabilities directly relevant to the con-
cept of service offerings and the related formal specifica-
tion of various types of constraints.

In WSOL, specifications of different constraints are sepa-
rated into distinct constraint dimensions to achieve greater
flexibility and reusability of specifications. This is a separa-
tion-of-concerns issue. However, to support easier choice
by consumers, these constraint dimensions are integrated
into a service offering.

WSOL currently enables formal specification of:
o functional constraints (pre- and post-conditions),
o QoS (a.k.a. non-functional) constraints,
o simple access rules,
o price,
o relationships with other service offerings of the same

Web Service, and
o information about which entity (the Web Service, the

consumer, or some trusted third party) is responsible
for monitoring particular constraints.

QoS constraints describe properties such as performance,
reliability, availability, etc. Note that access rules in WSOL
describe what subset of Web Service’s operations a service
offering allows consumers to use, i.e., they serve for differ-
entiation of service. Conditions under which particular con-
sumers or classes of consumer may use a service offering
are specified and stored outside the WSOL description of a
Web Service. Specification of relationships between service
offerings is important to support: 1) easier and more
straightforward specification of relatively similar service
offerings of one Web Service or several similar Web Serv-
ices; 2) easier discovery, selection, and negotiation of ap-
propriate service offerings; 3) capabilities for dynamic ad-
aptation using manipulation of service offerings. These
capabilities will be presented later in this paper.

In the future, we will make specification of the constraints
currently supported in WSOL more powerful. We also plan
to add formal specification of some other constraints. Fur-
ther, we are working intensively on proof-of-concept proto-
types [19] for a WSOL parser, an automatic generator of

constraint-checking Java code, and a Java API (Application
Programming Interface) for generation of WSOL files.

We are still working on some issues related to the separa-
tion and integration of constraint dimensions. Another issue
that we are re-examining is specification of relationships
between service offerings. Our current solution is based on
constraint dimensions. Yet another issue is definition of
formal and unambiguous ontologies for different QoS met-
rics, measured properties, measurement units, currencies,
and other terms related to monitoring and management of
Web Services. For example, the QoS metrics that are used
to define QoS constraints have to be ontologically defined
because they can be easily misinterpreted. It is important
that these ontological definitions include specification of
dependencies and relationships between QoS metrics. In
[20], we have discussed requirements for such ontologies,
as well as why existing ontologies are not appropriate.

WSOL is, as far as we know, the only ongoing work on
formal specification of classes of service for Web Services.
On the other hand, there are several other ongoing works
on formal specification of various types of constraints for
Web Services. One example is DAML-S (DARPA Agent
Markup Language – Services) [4]. We have compared
WSOL with several such efforts in [20]. Further, in [19] we
have related WSOL to the previous works on formal speci-
fication of various constraints, and particularly such works
using XML.

More information about WSOL can be found in [19]. This
additional information includes an illustration of the WSOL
concepts with an e-business example, an illustration of the
WSOL XML schema with an example service offering in
WSOL, and a brief overview of prototypes of WSOL tools.

4 DYNAMIC ADAPTATION OF COMPOSITIONS
OF WEB SERVICES WITH MULTIPLE SERV-
ICE OFFERINGS

Composing complex systems from Web Services, espe-
cially during run-time, can significantly increase system
agility, flexibility, and adaptability. However, to further
increase these qualities, such compositions have to be man-
aged and adapted to various changes, particularly to those
changes that cannot be accommodated on lower system
levels such as communication software, operating system,
etc. This management and adaptation should occur while
the system is running, with minimal disruption to its opera-
tion and with minimal human involvement. In other words,
it should be dynamic and autonomous. Dynamic composi-
tion of Web Services is out of scope of the work presented
in this paper. We assume that Web Services are already
composed into a component system, and address only dy-
namic adaptation of this composition of Web Services.

We want to achieve dynamic adaptation of compositions of
Web Services without breaking an existing relationship
between a Web Service and its consumer. This goal differ-
entiates our work from the past work on architecture-based
adaptation approaches based on finding alternative compo-

 4

nents and rebinding [14, 13, 15, 10, 6, etc]. To achieve this
goal we are researching dynamic adaptation capabilities
based on manipulation of service offerings. Our dynamic
adaptation capabilities include switching between offerings,
deactivation/reactivation of existing offerings, and creation
of new appropriate offerings. These capabilities are under
control of the Web Service and therefore their use, espe-
cially the creation of new service offerings, can be re-
stricted. A vendor of a Web Service can decide that under
some circumstances, or permanently, some classes of con-
sumer cannot use some of these capabilities in a particular
Web Service due to security reasons, because these capa-
bilities are not fully implemented or other reasons. An e-
commerce example illustrating these three dynamic adapta-
tion capabilities is given in [19].

Note that one of the crucial issues related to these capabili-
ties is how to appropriately relate service offerings. Some
of these relationships are essential in deciding on which
offering to switch (particularly after deactivation of some
offering), while others are necessary for efficient and cor-
rect dynamic creation of new offerings. We address this
issue in our work on WSOL, where we pay particular atten-
tion to such issues relevant for dynamic adaptation and
management.

Dynamic Switching of Service Offerings
Switching between service offerings is equivalent to chang-
ing which offering a consumer uses. It is the basic method
for dynamic adaptation in our work. Switching can be initi-
ated by a consumer or by the Web service. This capability
enables consumers to dynamically adapt the service and
QoS they receive without the need to find another Web
Service. It also enables Web Services to upgrade or degrade
their service and QoS seamlessly. Switching should be
done only in a way that constraints in the new service offer-
ing are not violated. The Web Service should prevent any
consumer’s request to switch to an inappropriate offering.
However, a Web Service might have to switch a consumer
to an offering that is not completely compatible with the
currently used one. For example, this can happen after a
deactivation of a service offering.

Dynamic Deactivation/Reactivation of Service Offerings
A Web Service can dynamically and automatically (i.e.,
without a direct request from the consumer) deactivate and
reactivate service offerings when changes in operational
circumstances affect what offerings it can support. Some
service offerings cannot be used in all circumstances. For
example, it is sometimes impossible to achieve high QoS or
it is dangerous to offer offerings with low security. An ex-
ample of changed circumstances is unexpected fluctuation
in the QoS provided by used Web Services.

The most important issue related to the deactivation of
service offerings is what to do with consumers using the
deactivated offering. We are developing support for han-
dling such cases. In our solution, the Web Service auto-
matically switches the affected consumers to another offer-

ing and then notifies them about the change. When an af-
fected consumer receives such notification, it can decide
what to do next in the specific situation. Some examples of
consumer decisions are accepting the automatic switching,
switching explicitly to another offering that the consumer
estimates more appropriate, and discarding the affected
operation invocation or the whole session with the Web
Service. As consumers in our work are other Web services
these decisions are done by some programming logic and
not by human intervention. This programming logic can be
built into the Web Service or into some external manage-
ment infrastructure. In cases when there is no appropriate
offering to switch to, other approaches to dynamic adapta-
tion, such as finding an alternative Web Service, have to be
used. We will discuss later in this paper how our capabili-
ties can still be beneficial in such situations.

The deactivated offering might be reactivated automatically
after another change of circumstances and, eventually, the
consumers can be automatically switched back to their
original offering and notified about the change. This helps
achieve as much as possible the originally intended level of
service and QoS. A consumer should also have the option
of notifying the Web Service that it is not interested in
automatic restoration of the original offering. We suggest
switching an affected consumer back to the reactivated
offering only if the consumer has not explicitly initiated
switching offerings in the meantime. Consumers that ex-
plicitly initiated switching to an offering (even to the offer-
ing provided as the automatic temporary replacement)
should only be notified when this offering is reactivated.

Automatic switching after deactivation or reactivation of
service offerings helps in fast dynamic adaptation to
changes and disturbances, with minimal loss of service and
QoS, and with minimal human involvement. It supports
both graceful degradation and seamless service upgrades
and expansions. In many situations, it is better for an af-
fected consumer to accept another service offering (e.g.,
with less QoS) from the same Web Service than to break
the relationship with the Web Service.

Dynamic Creation of New Service Offerings
We are also working on support for dynamic creation of
new service offerings for existing Web services and ports
of Web Services. Not all circumstances of run-time opera-
tion, such as some issues related to QoS, and not all con-
sumer needs can be predicted in advance. Therefore, this
capability is needed as an addition to the concept of service
offerings to enable further flexibility, customizability, and
adaptability. This capability can also be a useful support for
dynamic evolution of Web Services with minimal disrup-
tion of heir operation, especially for describing effects on
co-operating Web Services. While the former two dynamic
adaptation capabilities handle changes that are to some
extent anticipated, this capability can be used for unantici-
pated changes.

Different types of constraints show different need for dy-

 5

namic definition. For example, while many QoS constraints
often have to be defined dynamically to correspond to par-
ticular operational circumstances, functional constraints
change dynamically only when the Web Service is dynami-
cally versioned. For this reason, we relate our research on
this capability to our research on the issue of separation and
integration of constraint dimensions in WSOL and on the
issue of specifying relationships between service offerings.

Note that creation of new service offerings is not creation
of new functionality, i.e., Web Service constructs described
in WSDL files. It is creation of new sets of constraints
(e.g., QoS constraints and access rights) for existing func-
tionality of the Web Service. It can eventually accompany,
but not completely replace, dynamic creation of new func-
tionality, e.g., during dynamic evolution of Web Services.
Nevertheless, this capability is both powerful and danger-
ous, in the sense that it cannot be performed arbitrarily due
to various possible conflicts. For example, QoS constraints
cannot be set arbitrarily because of the limitations of used
resources (including other Web Services), mutual depend-
encies of QoS parameters, and other issues. Detection and
resolution of such conflicts can be very complex. Creating
new offerings can consume considerable time and re-
sources of the Web Service. For these reasons, we suggest
creating new offerings only under certain circumstances,
only for certain classes of consumer, and only after rigor-
ous conflict checks. For example, a Web Service might
create new offerings when:
o its implementation has dynamically changed (e.g., in

the case of dynamic versioning/evolution);
o offerings of a Web Service it uses have been dynami-

cally updated (e.g., offer better QoS);
o an important (e.g., ‘premium’) consumer has requested

creation of a new offering and is willing to pay for it.
In the first two cases, creation of new offerings is initiated
by the Web Service itself to better adapt to changed opera-
tional circumstances. In the third case, creation of new of-
ferings is done on consumer’s demand and can be charged
for. One way to limit creation of new offerings to specific
classes of consumer is to include appropriate mechanisms
only in selected offerings. The infrastructure support neces-
sary for dynamic creation of new service offerings is dis-
cussed later in this paper.

Benefits and Limitations of These Capabilities
Compared to finding alternative Web Services and rebind-
ing, our dynamic adaptation capabilities have both advan-
tages and limitations. The main limitation is that service
offerings of one Web Service differ only in constraints,
which might not be enough for adaptation. Appropriate
alternative offerings of the same Web Service cannot al-
ways be found or created. In such situations, the consumer
has to search for alternative Web Services. However, these
capabilities also have their benefits and advantages over
finding alternative Web Services and rebinding. These
benefits include adaptation speed, enhanced robustness of
the relationships between Web Services, simplicity and low

overhead, and supplementary support for handling
inconsistency in Web Service compositions.

Speed of adaptation is the probably the main advantage.
Finding alternative Web Services can take a relatively long
time and its success cannot be guaranteed. As Web Serv-
ices are distributed over the Internet, so are Web Service
directories and/or brokers that can be queried to find an
alternative Web Service. While some of these Web Service
directories and brokers will be federated and synchronized,
some will be independent. This complicates and slows the
search. Further, even if the process of finding an alternative
Web Service is successful, a successful replacement in the
service composition is not guaranteed [11, 12]. In modern
market and business circumstances, adaptation speed can
be an important differentiator among competitors. The sug-
gested dynamic adaptation capabilities do not require hu-
man intervention and can be performed very fast. They are
particularly faster than finding alternative Web Services
when the latter approach requires establishment of new
trust relationships.

Another advantage is enhanced robustness of the relation-
ship between a Web Service and its consumer. This im-
proved robustness benefits the Web Service vendor since
alternative Web Services can also be provided by the com-
petition. A break in the relationship could mean lost reve-
nues and lost market share. The suggested capabilities help
the vendor retain existing consumers and, hence, revenue
sources. Additionally, they do not require establishment of
new trust relationships. This is an important issue in com-
positions of e- and m-business Web Services. Due to the
issue of trust, the enhanced robustness of the discussed
relationship benefits not only vendors of Web Services, but
also the consumers.

Further, the suggested capabilities are simpler and incur
less overhead than switching between Web Services that
provide the same functionality, but with different con-
straints. For example, switching between service offerings
does not require session state transfer and synchronization;
the identity of the Web Service does not change so the con-
sumers need not update it; etc. Also, dynamic creation of
new Web Services, although possible, is much more com-
plex than dynamic creation of new service offerings.

To conclude, these capabilities are fast, simple, inexpensive
(in terms of overhead), and beneficial from the business
aspect both on the Web Service and the consumer side.
They provide additional flexibility, adaptability, and ro-
bustness – qualities that will be very important for choosing
between several similar Web Services in the market. We
find our approach particularly advantageous when dynamic
adaptation is required relatively frequently and can be
achieved with a variation, not a drastic modification, of
provided services and QoS at the Web Service level (and
not completely at the lower system levels). Such circum-
stances occur in many non-trivial situations, ranging from

 6

small temporary disturbances of service and QoS caused by mobility to dynamic evolution of Web Services.
Breaking an existing relationship between the composed components?

NO YES Replacing one component at a time?

– Manipulation of component parameters

YES
(Localized re-composition)

NO
(Ground-up

re-composition)
– Manipulation of classes of service Using another version of the same component –
– Customization to user profiles and/or context Using a similar component from the same vendor – partial –
– Hot-swapping of components Using a similar component from a different vendor – complete –

Figure 1. Classification of approaches to dynamic adaptation of component compositions

5 THE DAMSC INFRASTRUCTURE
To support service offerings, the presented dynamic adapta-
tion capabilities, and management activities related to serv-
ice offerings, we are developing an infrastructure called
DAMSC (Dynamically Adaptable and Manageable Service
Compositions) and its proof-of-concept prototype. This is
still work in progress, so results that are more complete will
be presented elsewhere. In the future, we plan to integrate
into DAMSC not only support for dynamic adaptation and
management using service offerings, but also other ap-
proaches to dynamic adaptation of compositions of Web
Services. However, our current work is confined to service
offerings and it deals more with support to be built into
Web Services and less on infrastructure to be developed
outside of the composed Web Services.

To enable easy, convenient, and uniform access to dynamic
adaptation and management mechanisms we define special
management operations. We assume that the signature of
these operations and their grouping into appropriate port
types will be well known (and hopefully standardized). One
of these management operations can provide information
about what standardized management port types and/or
operations the particular Web Service supports. We believe
that as the set of Web Service standards grows to address
different aspects of A2A and B2B integrations, it will have
to somehow standardize management operations. The sig-
nature of our management operations is currently not re-
lated to any management standard. If an appropriate man-
agement standard for Web Services is developed, we will
make our work compatible with it.

We are exploring use of aspect-oriented programming
mechanisms and/or SOAP (Simple Object Access Protocol)
intermediaries to integrate implementation of these opera-
tions, as well as relevant data structures and other support,
with already existing Web Services.

One of the management operations supporting service of-
ferings informs a consumer about the currently active offer-
ings it is allowed to use. When a consumer invokes this
operation, the operation returns a WSOL file with appro-
priate service offering descriptions. The consumer might
not know at all about the existence of other offerings,
which it is not allowed to use, and their features. Another
operation informs a consumer about new offerings it may
use, again in the form of a WSOL file. This service offering
advertisement mechanism can be used when new offerings

are dynamically created, when existing offerings are reacti-
vated, when the Web Service vendor allows new classes of
consumer to use existing offerings so that it can better util-
ize resources or to increase its monetary gain, etc. Such
advertisement should be done in a way that does not expose
security threats to the Web Service. Another set of related
operations informs a consumer about the details of the cur-
rently used offering. For example, one of these operations
returns information about the related service offerings.
Note that operations for answering various queries about
service offerings, along with those for finding offerings that
best match given criteria set, are left for future work.

These operations also support our dynamic adaptation ca-
pabilities. In addition, we define several other operations to
address issues specific to these capabilities. One operation
enables consumers to initiate switching offerings. Another
two inform consumers when an offering is deactivated or
reactivated. Several operations related to dynamic creation
of new offerings are defined. While many consumers will
have access to switching offerings, access to operations for
deactivation/reactivation and creation of offerings should
be restricted.

6 VARIOUS APPROACHES TO DYNAMIC AD-
APTATION AND THEIR INTEGRATION

Our dynamic adaptation capabilities are complementary to
reconfiguration by rebinding, and are not completely its
alternative and replacement. Therefore, it is appropriate to
study an integrated approach to dynamic adaptation of
component compositions, an approach that would leverage
complementary benefits of both manipulations of service
offerings and reconfiguration by rebinding. Even further,
such an integrated approach could encompass other ap-
proaches to dynamic adaptation of component composi-
tions that we have not previously mention in this paper. Let
us now try to analyze such approaches and what the charac-
teristics of an integrated approach could be. In the follow-
ing discussion, we use the umbrella term ‘component’ to
emphasize that the discussion applies both to Web Services
and software components.

All approaches to dynamic adaptation of component com-
positions can be classified into two groups, depending
whether they break an existing relationship between com-
posed components or not. This is illustrated in Figure 1.

 7

The first group adjusts the relationship between the com-
posed components without breaking it. We identify four
sub-approaches and enumerate them in the order of increas-
ing power and complexity. The first is manipulation of
some component parameters. The second is providing mul-
tiple classes of service and their manipulation. This is the
central approach in our current research. The third is re-
customization of service to user profiles and/or the opera-
tion environment and context. The fourth is hot-swapping
the component with a new, more appropriate version (i.e.,
replacing it during run-time with minimal system interrup-
tion). In this sub-approach, the old version of the compo-
nent is replaced by the new version (maybe even without
consumer’s knowledge), so there is some preservation of
the relationship with the consumer. However, this sub-
approach is on the border with the second group, which is
discussed next.

The second group of approaches to dynamic adaptation of
component compositions breaks up the relationship be-
tween the composed components and performs re-
composition. This is the reconfiguration by rebinding
group. We identify two broad subgroups of approaches.
The first one replaces one component at a time – we call
this localized re-composition. Note, however, that for a
complete adaptation of component compositions often a
chain of localized re-compositions is necessary because the
replacement of one component with a more appropriate one
might introduce inconsistency and the need to replace some
of its consumers. The second subgroup breaks larger por-
tions of the composition structure – we call this ground-up
re-composition.

In the localized re-composition, we identify three distinct
cases, depending how extensive the search for the replace-
ment component has to be. The first case is when instead of
the old component, its more appropriate (probably newer)
version is used. The difference between this case and hot-
swapping of components is that the old version is not re-
moved (i.e., both versions still exist in the overall system),
but the consumer switches from using the old version to
using the new. The second case is replacing the old compo-
nent with a similar component from the same component
vendor or, eventually, its business partners. The specificity
of this case is that it is likely that the component vendor
will provide relatively reliable information about the com-
patibility and differences of its components. This informa-
tion might be even part of the documentation of the re-
placed component. Consequently, the search for an alterna-
tive replacement component is localized and more straight-
forward. The third case in this subgroup is replacing the
component with a similar component from a different com-
ponent vendor. This is the most general case and we have
briefly compared it with our dynamic adaptation capabili-
ties. To repeat, the main issue is that the search for an ap-
propriate replacement component can turn out to be com-
plex and time-consuming, without guarantees that it will
ultimately succeed.

Ground-up re-composition can be complete or partial, de-
pending whether the whole old composition structure is
broken or only a part of it. It can be attempted after the
chain of localized re-compositions did not succeed or it can
be attempted even without trying localized re-composition.
We find the latter strategy appropriate when dependencies
between the composed components are numerous and/or
complex, so that long chains of localized component re-
placements can be expected.

The approaches to dynamic adaptation of component com-
positions classified in Figure 1 differ in power, in complex-
ity, and their strengths and weaknesses are often compati-
ble in many aspects. An integrated approach to dynamic
adaptation of component compositions would implement
several different approaches and apply the appropriate one
in a given situation. We believe that although an ideal sys-
tem for dynamic adaptation would implement the whole
spectrum of these approaches, this might not be strictly
necessary in practice. At minimum, at least one approach
from each of the two big groups (i.e., with and without
breaking an existing relationship) should be implemented.

When multiple approaches to dynamic adaptation of com-
ponent compositions are used, two general strategies can be
applied. The first is “start simple, and gradually go to more
complexity when needed”. In this strategy, a simple adapta-
tion is attempted first. If it produces an acceptable result,
then the adaptation process is finished. If the result is not
acceptable, the next more complex approach is attempted.
The second strategy is “assess the situation and applicabil-
ity and overhead of different options”. First, the given
situation is assessed by appropriate program logic. If it
seems that simple adaptation is not enough, then the pro-
gram logic should try to estimate how long the required
complex adaptation will last and how this would affect de-
sired system properties such as availability, uninterrupted
service, etc. If the duration of the required adaptation proc-
ess is acceptable, then this adaptation should be attempted.
However, if it is estimated that this duration is not accept-
able, then the required complex adaptation process should
be started only after a temporary good-enough simple adap-
tation is applied and used in parallel. Let us illustrate this
issue with a more concrete discussion.

We advocate using dynamic adaptation capabilities based
on manipulation of classes of service of the same Web
Service as a complement and addition to finding alternative
Web Services and rebinding. Often, the used Web Service
will not have a service offering appropriate for dynamic
adaptation (and will not be able or willing to create one), so
the consumer has to find an alternative Web Service. How-
ever, it might be appropriate to automatically switch the
consumer to any service offering (of the old Web Service)
with at least of some value to the consumer, while search-
ing for an alternative Web Service in parallel. The benefit
is that the consumer gets at least some service and QoS
while a replacement Web Service is not found. If a re-
placement Web Service is not found, the consumer has to

 8

make the decision whether to continue using this temporary
replacement service offering or to abandon this old Web
Service. This example illustrates applicability of our re-
search and its relevance for the theme of this workshop.

7 CONCLUSIONS AND FUTURE WORK
Dynamic reconfiguration of component compositions can
further increase flexibility, adaptability, and agility of com-
ponent-based systems. However, it is a complex issue. It
might even turn out to be more complex than dynamic
composition, due to system-level requirements, such as
uninterrupted service availability, as well as various issues
related to paying components. No approach is without
drawbacks. For example, reconfiguration by rebinding of
Web Services can take a long time, particularly due to the
Internet-wide distribution of Web Services and correspond-
ing directories and brokers. Therefore, the strengths of
various approaches have to be combined to produce dy-
namic reconfiguration that can achieve both the required
new state of the component system and the desired system-
level qualities.

This is where our research on dynamic adaptation of com-
ponent compositions using manipulation of classes of serv-
ice fits in. While in this research we study reconfiguration
in the context of dynamic adaptation and concentrate on
Web Services as specific distributed components, the main
ideas, particularly integration of various reconfiguration
approaches, seem relevant to dynamic reconfiguration of
component systems in general. Our dynamic adaptation
capabilities have limitations, but their advantages include
speed, enhanced robustness of the relationships between
components, simplicity, and low overhead. They can be a
useful complement and addition to the reconfiguration by
rebinding.

Providing multiple classes of service at the Web Services
level also has benefits other than additional support to dy-
namic adaptation. It gives additional flexibility and choice.
Consumers get additional flexibility in selecting appropri-
ate Web Services and their levels of service and QoS, while
minimizing the price/performance ratio. On the other hand,
providers of Web Services have more flexibility in balanc-
ing underlying resources, as well as in covering the Web
Service market by addressing the needs of diverse consum-
ers. The overhead related to providing multiple classes of
service for Web Services is relatively low, and the com-
plexity of management required is limited.

We continue our work on WSOL by improving specifica-
tion of the types of constraints supported and by adding
some new ones. This work is accompanied by the devel-
opment of appropriate prototype WSOL tools. However,
the main challenges in our future research are related to
developing the DAMSC infrastructure and its proof-of-
concept prototype.

REFERENCES
1. Aimoto, T., Miyake, S. Overview of DiffServ Tech-

nology: Its Mechanisms and Implementation. IEICE

Trans. Inf. & Syst., Vol. E83-D, No. 5 (May 2000),
IEICE, pp. 957-964.

2. Bosch, J., Szyperski, C., Weck, W. WCOP 2002: Sev-
enth International Workshop on Component-Oriented
Programming Call for Papers. WWW page, January 31,
2002. On-line at:
http://www.research.microsoft.com/%7Ecszypers/even
ts/wcop2002/

3. Curbera, F., Mukhi, N., Weerawarana, S. On the
Emergence of a Web Services Component Model. In
Proc. of the WCOP 2001 workshop at ECOOP 2001
(Budapest, Hungary, June 2001). On-line at:
http://www.research.microsoft.com/~cszypers/events/
WCOP2001/Curbera.pdf

4. The DAML Services Coalition. DAML-S: Semantic
Markup for Web Services. WWW page, December 12,
2001 (last accessed: March 14, 2002). On-line at:
http://www.daml.org/services/daml-s/2001/10/daml-
s.html

5. Feng, N., Ao, G., White, T., Pagurek, B. Dynamic
Evolution of Network Management Software by Soft-
ware Hot-Swapping. In Proc. of the Seventh
IFIP/IEEE International Symposium on Integrated
Network Management - IM 2001 (Seattle, USA, May
2001), IEEE Publications, pp. 63-76.

6. Hasselmeyer, P. Managing Dynamic Service Depend-
encies. In Proc. of the 12th International Workshop on
Distributed Systems: Operations & Management -
DSOM 2001 (Nancy, France, October 2001). On-line
at:
http://www.loria.fr/~festor/DSOM2001/proceedings/S
5-1.pdf

7. Heineman, G. T., Council, W. T. (eds.) Component-
Based Software Engineering: Putting the Pieces To-
gether. Addison-Wesley, 2001

8. International Business Machines Corporation (IBM),
Microsoft Corporation. Web Services Framework. In
Proc. of the W3C Workshop on Web Services –
WSWS’01 (San Jose, USA, April 2001), W3C. On-line
at: http://www.w3.org/2001/03/WSWS-popa/paper51

9. Kristiansen L. (ed.) Service Architecture, Version 5.0.
TINA-C (Telecommunications Information Networking
Architecture Consortium) specification, June 16, 1997.
On-line:
http://www.tinac.com/specifications/documents/sa50-
main.pdf

10. Magee, J., Kramer, J. Dynamic Structure in Software
Architectures. In Proc. of the 4th ACM SIGSOFT Sym-
posium on Foundations of Software Engineering (San
Francisco, USA, 1996), ACM Press, 3-14.

11. Mennie, D., Pagurek, B. An Architecture to Support
Dynamic Composition of Service Components. In

 9

Proc. of the 5th International Workshop on Compo-
nent-Oriented Programming – WCOP 2000 at the 14th
European Conference on Object-Oriented Program-
ming - ECOOP 2000 (Sophia Antipolis, France, June
2000). On-line at: http://www.ipd.hk-
r.se/bosch/WCOP2000/submissions/mennie.pdf

12. Mennie, D., Pagurek, B. A Runtime Composite Serv-
ice Creation and Deployment and Its Applications in
Internet Security, E-commerce, and Software Provi-
sioning. In Proc. of the 25th Annual International
Computer Software and Applications Conference -
COMPSAC 2001 (Chicago, USA, Oct. 2001), IEEE
Computer Society Press, pp. 371-376.

13. Oreizy, P., Medvidovic, N., Taylor, R. N. Architec-
ture-Based Software Runtime Evolution. In Proc. of
the International Conference on Software Engineering
1998 - ICSE'98 (Kyoto, Japan, Apr. 1998), ACM
Press, pp. 177-186.

14. Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbinger,
D., Johnson, G., Medvidovic, N., Quilici, A., Rosen-
blum, D. S., Wolf, A. L. An Architecture-Based Ap-
proach to Self-Adaptive Software. IEEE Intelligent
Systems, Vol. 14, No. 3 (May/June 1999), 54-62.

15. Pryce, N., Dulay, N. Dynamic Architectures and Ar-
chitectural Styles for Distributed Programs. In Proc. of
7th IEEE Workshop on Future Trends of Distributed
Computing Systems - FTDCS'99 (Cape Town, South
Africa, December 1999), IEEE Computer Society
Press, 89 –94.

16. Szyperski, C. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998

17. Tan, L., Esfandiari, B., Pagurek, B. The SwapBox: A
Test Container and a Framework for Hot-swappable
JavaBeans. In Proc. of the 6th International Workshop
on Component-Oriented Programming –WCOP 2001
at the 15th European Conference on Object-Oriented
Programming - ECOOP 2001 (Budapest, Hungary,
June 2001). On-line at:
http://www.research.microsoft.com/~cszypers/events/
WCOP2001/Esfandiari.doc

18. Tosic, V., Pagurek, B., Esfandiari, B., Patel, K. On the
Management of Compositions of Web Services. In
Proc. of the OOWS’01 (Object-Oriented Web Services
2001) workshop at OOPSLA 2001 (Tampa, Florida,
USA, Oct. 2001). On-line at:
http://www.research.ibm.com/people/b/bth/OOWS200
1/tosic.pdf

19. Tosic, V., Patel, K., Pagurek, B. WSOL – Web Service
Offerings Language. Submitted for publication, 2002.

20. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K. On
Requirements for Ontologies for Management of Web
Services. Submitted for publication, 2002.

